

Fully 3D Printed Soft Actuator Characterization

Adaptive Additive Technologies Laboratory

Presenter:

Dr. Jose Garcia

Assistant Professor, School of Engineering Technology

Alfonso Costas, Dr. Brittany Newell CCEFP SUMMIT 2019

June 5, 2019

3D Printed Fluid Power Components

The steering system for controlling forklift model needed a small actuator

Steering Assembly

Literature Review

Oak Ridge National Lab:

E-beam printing using Titanium

3D Printed Hand

- Integrated pump, fluid passages and piston into a single structure
- Operating pressure: 3000 psi
- Meshed palm reduced weight by 80%
 - Less material and energy
 - Less build time
 - Lower cost

3D Printed Arm:

- Completely printed arm
- Avoided need for hoses
- Blended hydraulics and electronics
- Custom thermal valves for higher efficiency

Integrated Pistons

Lonnie J. Love, Emerging Manufacturing Technologies and their Impact on Fluid Power

DeHoff et al. Freeform Fluidics, International Journal for Fluid Power, 2013

Literature Review (CONT'D)

Fully 3D Printed Robot by MacCurdy et al.:

- Co-printed solids and liquids to make robot in one print
- Printed bellows actuators and gear pump
- Used polyjet printing

MacCurdy et al. 2016 IEEE International Conference on Robotics and Automation

Rost and Schdle, 2013 12th International Conference on Machine Learning and Applications

Festo's Robotic Hand with 3D Printed Actuators:

- Printed bellows actuators directly
- Used SLS printing in Formiga P 110
- Integrated bellows actuators in robotic hand

Literature Review (CONT'D)

Aidro Hydraulics

Metal 3D printing machine (DMLS technology)

Manifold:

- 75% weight reduction and reduced dimensions to half the original size
- Better mechanical properties
- Improved system performance

Spool Valve:

- New orifice shapes
- Lower pressure drop
- Fabricate spool in one single part

Traditional Hydraulics

3D-Printed Hydraulics

Aidro Hydraulics, 3D Printed Hydraulic Manifold for Agricultural Machinery

3D Printing Methods

Fused Deposition Modeling (FDM)

Stereolithography (STL)

Filament is heated and extruded

- Makerbot Replicator 2x
 - 25 x 16 x 16 cm
 - 100 micron layer resolution

3dhubs.com/3d-printers/makerbot-2x

- Lulzbot Taz 5
 - 28 x 28 x 25 cm
 - 100 micron layer resolution

3dhubs.com/3d-printers/lulzbot_taz5

Selective Laser Sintering (SLS)

- Laser reflects a beam of light in a mirror to cure resin
- Rigid and flexible materials available
- Formlabs Form 2
 - 15 x 15 x 18 cm
 - 140 micron laser point size resolution

https://shop3d.ca/products/form2

Digital Light Projecting (DLP)

- Projector flashes individual layers
- · Highest resolution
- Autodesk Ember
 - 6 x 4 x 16 cm
 - 50 micron resolution (nominal), 1 micron resolution (maximum)

https://ember.autodesk.com/

Polyjet Printing

- Resin is deposited by the build head and a light source cures the resin
- · Objet Eden 360 V
 - 35 x 35 x 20 cm
 - 20-85 microns for features below 50 mm; up to 200 microns for full model size

http://www.goengineer.com/products/objet-eden-350350v/

Silicone Printing

Pneumatic-based extrusion for 3D bioprinting living tissues and silicone substrates

- · Dual printheads
- UV-crosslinking system

3D Printing Materials

Fused Deposition Modeling (FDM)

Stereolithography (STL)

PLA and ABS

Filaments for rigid parts

High Impact Polystyrene

D-limonene soluble filament

Polyvinil Alcohol

• Water soluble filament

Selective Laser Sintering (SLS)

Formlabs Clear

Clear resin

Formlabs Tough

 Designed to simulate ABS plastic

Formlabs Durable

- Designed to simulate Polypropylene
- Resistant to friction and wear

Formlabs Flexible

 Ideal for seals and other flexible partts

Digital Light Projecting (DLP)

CPS PR48

 Clear, higher resolution than Formlabs clear but lower Young's modulus resin

Other resins in Form 2 catalog

https://ember.autodesk.com/

Polyjet Printing

RGD 720

Clear resin

SUP 705

 Additional support material

Silicone Printing

Alginate

CELLINK & Fibrinogen

CELLINK® PCL

CELLINK & Tricalcium phosphate

Obtaining a Working Actuator

First Attempt: Piston-Cylinder Assembly

Printed piston, cylinder, and seal via STL

Advantages: Resembles real world application, simple design

Disadvantages: Poor tolerances cause excessive friction and/or leakage

Second Attempt: Resin-based Bellows Actuator

- Printed bellows directly using DLP
- Advantages: Encloses fluid, avoiding friction and leakage issues
- Disadvantages: Poor material properties (Formlabs' flexible resin)
- Attempted many material and shape configurations

Fully printed SLA

Bellows actuators

- (a) Represents the CAD prototype
- (b) 3D printed version of fully flexible resin.
- (c) 50% Flexible 50% Clear 3D print prior to compression

- (e) 75% Flexible 25% Clear 3-D print prior to compression
- (f) 75% Flexible 25% Clear 3-D Print under compression

Designs	Dsgn. 1	Dsgn. 2	Dsgn. 3	Dsgn. 4	Dsgn. 5
Model		MMM	mm	7	HHH
Printer	Form Labs Form 2 Printer	Form Labs Form 2 Printer	Form Labs Form 2 Printer	Form Labs Form 2 Printer	Autode sk Ember
Support Point Size	0.3 mm	0.3 mm	0.3 mm	2.2 mm	Auto
Support Density	0.5	0.5	0.5	1.0	Auto
Internal Support	No support	No support	Yes	Yes	Yes
Print Location	Center	Center	Center	Center	Center
Print Orientation	Horz.	Horz.	Horz.	20° WRT Horz. plane	Vertical
Wall Thickness	0.4 mm	1 mm	1 mm	0.7 mm	1.2 mm
Number of Bellows	12	12	8	2	7
Bellows Diameter	24 mm	24 mm	20 mm	24 mm	24 mm
Bellows Height	1.6 mm	1.6 mm	3 mm	1.6 mm	1.6 mm
Results	WHIL	nuncions)	mm		Marie Control

Soft actuators

Third Attempt: Silicone-based Bellows Actuator

- 3D-printed mold via FDM
- Advantages: Better material properties, available literature
- Disadvantages: Actuators cannot be 3D printed directly
- Reasons for using soft actuators
 - Ease of fabrication
 - Safety of operation
 - High power-to-weight ratio
 - Low cost

Material Choice: Ecoflex 00-30

Tensile Strength: 200 psi

Elongation at Break: 900%

• Useful Temperature: -53 C to 232 C

Agarwal et al., Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices, Scientific Reports, 2016

Inflatable Compression Sleeve

Belforte et al., Soft Pneumatic Actuators for Rehabilitation, Actuators, 2014

Silicone-based Bellows soft Actuator

Step 1: Define Geometry

- Square cross-section to avoid radial expansion
- Geometry changes depending on the application
- Dimensional constraints:
 - Minimum wall thickness of 0.25 cm
 - Min./Max. length: 5-10 cm
 - Max. width/thickness: 5 cm
 - Min. Stroke: 0.14 cm

Step 2: Make Mold

FDM 3D print mold with a PVA core

Step 3: Cast Mold

Silicone-based Bellows soft Actuator

Resulting actuator

Soft Actuator Testing

Test Objectives:

- Effect on geometry on performance
- Pressure vs. stroke
- Velocity of actuation
- Response time, pressure threshold
- Max. Pressure, Max. Position
- Hysteresis, cyclic or constant loading

Device	Model	Range
Pressure Transducer	Honeywell LM/2345-08	0-15 psig
Position Sensor	SHARP GP2Y	20-150 cm
Electronic Pressure Control Valve	Proportionair FQPV2	2-20 SCFH

Soft Actuator Testing

Testing procedure

- Maintain Load Constant: No load, 200 g, and 500 g
- Keep pressure constant for 60 seconds, time for the pressure and the position to settle.
- Increase Decrease pressure values
- Measure Position

Steady-state:

- Length vs. Pressure
- Pressure Threshold
- No load, 200 g, 500 g

Dynamic:

- Position vs. time
- Extension and De-pressurization
- Response time (to achieve constant position)
- No load, 200 g, 500 g

All tests performed in one single actuator

60 second (per constant segment)

Results

Pressure vs. Displacement

Displacement (cm)

PURDUE								Ξ		
U	N	Ι	V	Е	R	S	Ι	T	Y	19

Load	Pressure Inresnoid (psi)
No load	0.47
200 g	0.75
500 g	1

Dynamic Data: Input Pressure

Step Response for Expanding Actuator at $\Delta P = 1.20 \text{ psi}$

Step Response for Expanding Actuator at $\Delta P = 1.60$ psi

Step Response for Retracting Actuator at

Step Response for Retracting Actuator at $\Delta P = 1.60$ psi

Soft actuators review of literature

displacement (mm)

displacement (mm)

- Sun, Y., Song, Y. S., & Paik, J. (2013, November). Characterization of silicone rubber based soft pneumatic actuators. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4446-4453)
- Guido Belforte, Gabriella Eula, Alexandre Ivanov and Silvia Sirolli Soft Pneumatic Actuators for Rehabilitation. Actuators May 26, 2014
- Case, J. C., White, E. L., & Kramer, R. K. (2015). Soft material characterization for robotic applications. Soft Robotics, 2(2), 80-87.

Fully 3-D printed actuator using Polyjet printing

Manufacture and testing

Polyjet Printing: Mix of Flexible and Hard Resin

Tango Resin [®] Hardness: 26-28 Shore A

VeroClear ® Resin Flexural Strength: 75-110 MPa

Fully 3D printed actuator

Manufacturing deficiencies and weak points

Fully 3D printed actuator

Fully 3-D printed actuator

Experimental characterization

Fully 3D printed actuator

Fully 3-D printed actuator

Characterization results

Soft actuator discussion and next steps

- Hyperelastic materials are designed for modeling rubber or rubber-like materials in which the elastic deformation can be extremely large.
- Typical stress-strain capabilities of a hyper-elastic material
- Some of the Hysteresis is exhibited due to elasticity of the material and mostly the evacuation of the air
- Need to test with negative pressure to better characterize the actuator

Soft actuator next steps

- Design and characterization of segmented and multiple actuators.
- FEA modeling of actuators

Embedded sensing through the use of 3D printable electrically conductive polymers and

layered structures

Dr. Jose M. Garcia

Assistant Professor

School of Engineering Technology

jmgarcia@purdue.edu

Adaptive Additive Technologies Laboratory

https://www.purdue.edu/aatl/

